Operation of Medium-size Reverse Osmosis Plants with Optimal Energy Consumption

نویسندگان

  • L. Palacin
  • C. de Prada
  • F. Tadeo
  • J. Salazar
چکیده

This paper deals with the optimal operational strategy of a reverse osmosis (RO) plant for remote sites. The electricity supply to these plants comes usually from renewable energies (wind and solar), when they are not temporarily available, they are complemented by a diesel generator and batteries. The water demand of small settlements in arid regions suffers strong variations along a day. As the higher demand of water usually occurs when solar energy is more available, the operational expenses can be reduced by considering the RO plant as an active load. A good control strategy, will implement a variable operation point, taking into account the predictions of water demand, the expected variation of the available energy sources and the scheduling of cleaning operations in the RO plant, in order to optimize the energy use. In this paper a hybrid predictive control is proposed to implement this task. Simulations of a specific plant show that an adequate operation reduces the diesel energy consumption, while satisfying the variable water demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sustainable Seawater Reverse Osmosis Desalination as Green Desalination in the 21st Century

Seawater reverse osmosis desalination (SWRO) requires less energy compared with the distillation method and thus is an important technology except Middle Eastern countries whereenergy costs are higher. Recently, even Middle Eastern countries where the distillation method is still a major technology, have begun adopting the RO method in new desalinationplants in line with government ...

متن کامل

A Novel Photovoltaic Powered Reverse Osmosis with Improved Productivity of Reverse Osmosis and Photovoltaic Panel

With the increasing installed capacity of desalination, the greenhouse gas emission for generating the required energy to power the desalination plants is also becoming the focus of attention in the world community. Domestic reverse osmosis membranes have been very successful technology especially in the developing world to provide safe drinking water. The novel concept of photovoltaic powered ...

متن کامل

Experimental Investigation of Energy Consumption and Performance of Reverse Osmosis Desalination using Design of Experiments Method

To control the quality of reverse osmosis (RO) product water and reduce operational costs and environmental impacts by increasing the system’s energy efficiency, it is necessary to identify the influence of process parameters on energy consumption and permeate water quality. This paper introduces a case study focused on the application of Design of Experiments (DOE) method in an industrial-scal...

متن کامل

Energy Consumption Optimization of Reverse Osmosis Membrane Water Desalination Subject to Feed Salinity Fluctuation

We study the energy consumption optimization of a reverse osmosis water desalination process producing a constant permeate flow in the presence of feed concentration fluctuation. We propose a time-varying optimal operation strategy that can significantly reduce the specific energy consumption compared to time-invariant process operation. We present both computational and experimental results th...

متن کامل

Various Approaches to Thermodynamic Optimization of a Hybrid Multi-effect Evaporation with Thermal Vapour Compression and Reverse Osmosis Desalination System Integrated to a Gas Turbine Power Plant

This paper investigates the simulation of a hybrid desalination system composed of multi-effect evaporation with thermal vapour compression desalination (METVC) and reverse osmosis (RO) plant. The hybrid desalination system is also integrated with a gas turbine power plant through a heat recovery steam generator (HRSG). First, a comprehensive Thermodynamic model for HRSG, METVC, and RO are deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010